If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-80x+100=0
a = 7; b = -80; c = +100;
Δ = b2-4ac
Δ = -802-4·7·100
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-60}{2*7}=\frac{20}{14} =1+3/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+60}{2*7}=\frac{140}{14} =10 $
| 21/(x-24)=x | | 12x^2+60x-600=0 | | F(x)=3-21 | | x/4+14=216 | | —10=-4x-10 | | 25^1/2×5–3=5x | | 3x+6=720 | | /10x-9=98 | | 45+r=113+45 | | 18+s+3=100 | | 98=x/10-9 | | 6^x-3=36 | | x^2-4x+3=48 | | (x-4)/(x-5)=0 | | n+16-12=6 | | X/4x=24 | | 7/(x-3)=3/x | | 6+y+5=8*5 | | d−73= 1 | | 7x=17x | | 20x+-x-10x-11=18 | | 32=6-3+k | | 2x+4-6x=14 | | 2.7+x+5.8=20.0 | | 32=3.14r2 | | 20w+w-10w-11=18 | | 20w+-w−10w−11=-18 | | 20w+-w−-10w−-11=-18 | | 100+25x=27x+80 | | 11-16s=-16s-2s-19 | | y=5(4-4)^2-4 | | -15-2d=-3d |